CEE 618 Scientific Parallel Computing (Lecture 11) OpenFOAM – Pipe Flow & small Pool Fire 2D/3D

Albert S. Kim

Department of Civil and Environmental Engineering University of Hawai'i at Manoa 2540 Dole Street, Holmes 383, Honolulu, Hawaii 96822

Table of Contents

- Pipe Flow
 - Square pipe
 - Cylindrical pipe

smallPoolFire

Square Pipe

- Analytic Solution
- OpenFOAM CFD simulation

Square Pipe: geometry file

```
1 = 1:
    Point(1) = \{10, 1, 1, 1\};
    Point(2) = \{10, -1, 1, 1\};
    Point(3) = \{10, 1, -1, 1\};
    Point(4) = \{10, -1, -1, 1\};
    Point(5) = \{-10, 1, 1, 1\};
    Point(6) = \{-10, 1, -1, 1\};
    Point(7) = \{-10, -1, -1, 1\};
    Point(8) = \{-10, -1, 1, 1\};
    Line(1) = \{1, 5\};
10
11
    Line(2) = \{5, 8\};
12
    Line(3) = \{8, 2\};
13
    Line(4) = \{2, 1\};
    Line(5) = \{1, 3\};
14
    Line(6) = \{5, 6\};
15
    Line(7) = \{8, 7\};
16
    Line(8) = \{2, 4\};
17
    Line(9) = \{3, 6\};
18
    Line(10) = \{6, 7\};
19
    Line(11) = \{7, 4\};
20
    line(12) = \{4, 3\}
```

Cylindrical Pipe

- Analytic Solution
- OpenFOAM CFD simulation

Cylindrical Pipe: geometry file

```
R = 2.0:
    H = 10;
 3
    Point(1) = \{0, 0, 0, 0.5\};
    Point(2) = \{ R, 0, 0, 0.5 \};
    Point(3) = \{ 0, R, 0, 0.5 \};
    Point(4) = \{-R, 0, 0, 0.5\};
    Point(5) = { 0, -R, 0, 0.5};
    Circle (1) = \{2,1,3\};
    Circle (2) = \{3,1,4\};
10
11
    Circle (3) = \{4,1,5\};
    Circle (4) = \{5,1,2\};
12
13
    Line Loop(5) = \{1,2,3,4\};
    Plane Surface(6) = \{5\};
14
    Extrude {0,0,H} {
15
      Surface(6);
16
17
    Physical Surface("left") = {6};
18
    Physical Surface("right") = {28};
19
    Physical Surface("wall1") = {19};
20
    Physical Surface("_{\text{Wall2}}") = {23}:
```

Cylinder geometry

- There are 6 surfaces.
- Those are wall 1 wall 4, left, and right.

Cyinder mesh

Small Pool Fire 3D

Figure: Temperature (first row) and Pressure (second row) Profiles: Initial (left) and Later (right)

Small Pool Fire 2D

Figure: Temperature (left) and pressure (right) profiles.

Note: Lab work

- After you login fractal, make a directory 'smallPoolFire2D' under your OpenFOAM-Case directory.
- ② Copy files from /opt/cee618s13/class11/fireFoam2D
 cpu/opt/cee618s13/class11/fireFoam2D/★ ./
- To setup: make
- Open system/controlDict, and change 'endTime' value from 3.0 to 1.0.
- (For your homework, change to 5.0.)
- **To run:** makelirun
- This simulation will take approximately an hour.

Note: After you down load a zip file, change "0" directory to anything else such as "t0". This is because some configuration errors occur in Paraview: $mv_{11}0_{11}t0$

smallPoolFire2D: Makefile

```
OpenFOAMfireFOAM=~/OpenFOAM/OpenFOAM—2.1.1/tutorials/combustion/fir
    all: copy
           touch smallPoolFire2D.foam
   copy:
           cp -r $(OpenFOAMfireFOAM)/* ./
   reset: clean
           rm −rf 0* 1* 2* 3* constant system processor* Allrun
10
11
   clean:
12
           rm -f PBS-* *.foam *.msh *.geo
13
14
15
   run:
           gsub fireFoam2Dsrl.pbs
16
```

fireFoam2Dsrl.pbs: PBS file for serial computation

- 1 #!/bin/bash
- 2 #PBS -I walltime=48:00:00
- #PBS -q batch
- 4 #PBS -N PBS-fireFoam
- 5 #PBS -V
- 6 cd \$PBS_O_WORKDIR
- 7 hostname
- 8 blockMesh
- e topoSet
- 10 createPatch -overwrite
- 11 date
- 12 time fireFoam
- 13 date

smallPoolFire2D: Allrun file

- blockMesh reads constant/polyMesh/blockMeshDict, generates
 the mesh and writes out the mesh data to points and faces, cells
 and boundary files in the same directory.
- topoSet and creatPatch are pre-processing actions.
- firFoam is a solver for this combustion problem using Large Eddy Simulation (LES) model developed for turbulence used in computational fluid dynamics.
- LES uses a filter (called LES filter). This filter is applied to a function f(r,t) and splits f into a filtered and sub-filtered parts. Governing equations are used separately for the two parts of the solution. Computation is faster than directly solving NS equation, i.e, direct numerical simulation (DNS).
- We will use this fireFoam2D case primarily for Paraview visualization. See HW11.